Standard microbiological approach to calculating z values, and consequences of approximations

Dr Tomas Skoglund

Based on the article
-On the common misuse of a constant z-value for calculations of thermal inactivation of microorganisms
https://doi.org/10.1016/j.jfoodeng.2021.110766
Outline

► Thermal inactivation of microorganisms – Basics
► Temperature dependence of kinetics
► Arrhenius – E_a vs. z-value
► Reference temperature, T_r, and Calculations with constant $z=z_r$ at $T \neq T_r$
► Examples
\[N = N_0 e^{-kt} \]

\[k = k_0 e^{\frac{E_a}{RT}} \]
\[= k_0 10^{-\frac{E_a}{\ln(10)RT}} \]

\[D = \ln(10)/k \]

\[D_r = \ln(10)/k(T_r) \]

\[L = \log \left(\frac{N_0}{N} \right) = \frac{F}{D_r} = \int_0^t 10^{\frac{T(t)-T_r}{z}} dt \]

\[F = \int_0^t 10^{\frac{T(t)-T_r}{z}} dt \]

\[z = \frac{\ln(10) RT T_r}{E_a} \]

\[z_r = \frac{\ln(10) RT_r^2}{E_a} \]
Let's take it from the beginning.

Arrhenius' plot

Thermal Death Time (TDT) plot

Decimal reduction time, s

Temperature (°C)

ln k

$\frac{E}{R}$
Thermal inactivation of microorganisms
Basics

► Target microorganism for the product?
 ● Pathogen or
 ● Food spoilage

► Kinetics
 ● First order kinetics – Two representations
 o Reaction rate (frequency factor), k (SI-unit s\(^{-1}\))
 o Decimal reduction time, D (SI-unit s)
 ● Temperature dependence – Two representations
 o Arrhenius activation energy, E_a (SI-unit J/mol)
 o z-value, (SI-unit K or °C)

\[
D = \frac{\ln(10)}{k}
\]

\[
z = \frac{\ln(10)RT_r}{T/E_a}
\]

\[
z_r = \frac{\ln(10)RT_r}{T/E_a}
\]

\[
\ln(10) \approx 2.303
\]
E_a vs. z-value (TDT (Thermal Death Time) plot from Bigelow 1921)
E_a vs. z-value (Data from Bigelow 1921)
E_a vs. z-value (Data from Bigelow 1921)

Arrhenius’ plot

$D = \frac{\ln(10)}{k}$

Bigelow’s TDT plot
E_a vs. z-value – lin/log regression

\[
D = \frac{\ln(10)}{k}
\]

Arrhenius’ plot

Bigelow’s TDT plot
E_a vs. z-value – lin/log regression

Arrhenius’ plot

$$D = \frac{\ln(10)}{k}$$

$\Delta(\log(1/D)) = 1$

$E_a = \ln(10)R/\Delta(1/T)$

Bigelow’s TDT plot

$\Delta(\log(D)) = 1$

D_z
E_a vs. z-value – lin/log regression (Data from Bigelow 1921)

$D = \frac{\ln(10)}{k}$

Arrhenius’ plot

Bigelow’s TDT plot

Let’s have a closer look!

Straight line fits well

Straight line fits well here too!!
E_a vs. z-value – lin/log regression (Data from Bigelow 1921)

A larger R^2-difference would be expected, had the temperature range been wider or the experiments more accurate.
Comments on the representations/models

E_a vs. z-value

Activation energy (E_a)
- A bit hard to interpret
- Empirically proven and theoretically explained

z-value for decimal reduction time (D)
- Easy to interpret
- Established in calculations of process lethality (F values, also denoted “sterilization value”)
- Often used inaccurately as constant, despite its temperature-dependent relationship to E_a

But does it matter?
Comments on the representations/models

E_a vs. z-value

For **narrow temperature ranges** within which the temperature dependence of the z-value can be neglected, the z-value expresses the increase in temperature [°C] necessary for obtaining the same effect in 1/10 of the time. In practice, however, the line is not straight (dotted line) and this cannot be neglected in the discussion of **larger temperature ranges**, as will be shown later. **Many investigations have demonstrated** the constancy of the energy of activation in a large number of reactions. The representation in Fig. 6.11 should therefore be used in calculations.

But how narrow?
As we will see, ”narrow” is narrow indeed!
The problem with constant z – An example

D plot vs. temperature based on Arrhenius (constant E_a) for Natural thermophilic flora, Milk (high D)
The problem with constant z – An example

D plot vs. Temperature based on Arrhenius (constant E_a) for Natural thermophilic flora, Milk (high D)
The problem with constant z – An example

D plot vs. Temperature based on Arrhenius (constant E_a) for Natural thermophilic flora, Milk (high D)

$z = \ln(10) RT_r T/E_a = z_r T/T_r$

$z_r = z(T = T_r) = \ln(10) RT_r^2/E_a$

$\zeta_{135{\degree}C} = 11.0{\degree}C$
Example – Calculation of holding time in a UHT line

Direct-steam injection with flash cooling: Temperature profile 80 °C – 138 °C – 81 °C

\[L = \frac{F}{D_r} = \int_0^{t_h} \frac{T - T_r}{D_r} \frac{T - T_r}{z_r} \frac{T - T_r}{T} \, dt \]

Constant temperature \[\Rightarrow L = \frac{t_h}{10} \frac{\vartheta - \vartheta_r T_r}{z_r T} \]

μ-organisms (pathogen and spoilage)

<table>
<thead>
<tr>
<th></th>
<th>(\vartheta_r)</th>
<th>(D_r)</th>
<th>(z_r)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clostridium botulinum spores</td>
<td>121.1 °C</td>
<td>12 s</td>
<td>10.0 °C</td>
</tr>
<tr>
<td>Natural thermophilic flora, Milk (high D)</td>
<td>121.1 °C</td>
<td>26.4 s</td>
<td>10.3 °C</td>
</tr>
</tbody>
</table>

Reference:
- Text books, e.g. H.-G. Kessler, Food and Bio Process Engineering
- W. G. Bigelow, "The logarithmic nature of thermal death curves,"

\[T_r = \vartheta_r + 273.15 K \]

<table>
<thead>
<tr>
<th>Target logred, (L)</th>
<th>12</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accurate holding time</td>
<td>(\frac{12 \times 12}{138-121.1}) \times \frac{121.1+273.15}{138+273.15} = 3.5 \text{ s})</td>
<td>(\frac{6 \times 26.4}{138-121.1}) \times \frac{121.1+273.15}{138+273.15} = 4.2 \text{ s})</td>
</tr>
<tr>
<td>Inaccurate holding time</td>
<td>(\frac{12 \times 12}{138-121.1}) \times \frac{121.1+273.15}{138+273.15} = 2.9 \text{ s})</td>
<td>(\frac{6 \times 26.4}{138-121.1}) \times \frac{121.1+273.15}{138+273.15} = 3.6 \text{ s})</td>
</tr>
</tbody>
</table>
Example – Calculation of holding time in a UHT line

Direct-steam injection with flash cooling: Temperature profile 80 °C – 138 °C – 81 °C

\[L = \frac{F}{D_r} = \int_0^{t_h} 10^{\frac{T-T_r}{z}} \frac{dT}{D_r} = \int_0^{t_h} 10^{\frac{T-T_r}{z}} \frac{dT}{T} \]

Constant temperature \(\Rightarrow L = \frac{t_h 10^{\frac{\vartheta-\vartheta_r T_r}{z_r} T}}{D_r} \)

\[t_h = \frac{L D_r}{10^{\frac{\vartheta-\vartheta_r T_r}{z_r} T}} \]

\[T_r = \vartheta_r + 273.15 \, K \]

μ-organisms

<table>
<thead>
<tr>
<th>(pathogen and spoilage)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clostridium botulinum spores</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kinetic data provided in the literature</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\vartheta_r)</td>
</tr>
<tr>
<td>(D_r)</td>
</tr>
<tr>
<td>(z_r)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Text books, e.g. H.-G. Kessler, Food and Bio Process Engineering</td>
</tr>
<tr>
<td>W. G. Bigelow, "The logarithmic nature of thermal death curves,"</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Target logred, (L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Accurate holding time</th>
</tr>
</thead>
<tbody>
<tr>
<td>((F_0 = 2.40 , \text{min}) 3.5 , \text{s})</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Inaccurate holding time</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.9 s</td>
</tr>
</tbody>
</table>

14% TOO SHORT
Example – Calculation of holding time

Difference between using approximation with constant $z = z_r$ and temperature dependence of z

Relative error of $t_h = 10 - \frac{(T - T_r)^2}{T z_r} - 1$

θ [°C]

$\text{Clostridium botulinum spores}$

$\text{Natural thermophilic flora}$

Dr. Tomas Skoglund, 2023
Example – Calculation of holding time

Difference between using approximation with constant $z=\text{z}_r$ and temperature dependence of z

![Diagram showing holding time vs. temperature for Clostridium botulinum spores and Natural thermophilic flora. The green line represents accurate calculation, while the dashed red line represents an inaccurate calculation with a constant z.](image-url)
Error calculations of F

T deviation from T_r for different T_r and with $z_r = 10.0 \, ^{\circ}C$

![Graph showing $\Delta T = T - T_r$ deviation for different T_r values with $z_r = 10.0 \, ^{\circ}C$.]
Error calculations of F

T deviation from T_r for different T_r and z_r

Relative error of $F = 10 \frac{(T - T_r)^2}{T z_r} - 1$
A direct heating & flash cooling system
80 – 138 (4 s) – 81 °C

\[\log \left(\frac{N_0}{N} \right) \text{ and } F \text{ based on constant } z \]

Clostridium botulinum spores:
\[L = \log \left(\frac{N_0}{N} \right) \]
\[F \]

Natural thermophilic flora (high D):
\[L = \log \left(\frac{N_0}{N} \right) \]
\[F \]

A direct heating & flash cooling system
80 – 138 (4 s) – 81 °C

\[L = 5.8 < 6 \]

\[F(\text{constant } z) = 2.98 \Rightarrow L = 2.98 \times 60/26.4 = 6.8 > 6 \]
An indirect heating & cooling system
96 – 123 – 137 (2 s) – 29 °C

Clostridium botulinum spores:

\[L = \log\left(\frac{N_0}{N}\right) \]

\[F \]

\[F \text{ based on constant } z \]

Natural thermophilic flora (high D):

\[L = \log\left(\frac{N_0}{N}\right) \]

\[F \]

\[F \text{ based on constant } z \]

\[L = 12.4 >> 6 \]

\[F(\text{constant } z) = 6.06 \Rightarrow L = 6.06*60/26.4 = 13.8 >> 6 \]
Conclusion

- **Temperature dependence**
 - Follows Arrhenius equation, linear $\log(k)$ vs. $1/T$
 - Seemingly, but inaccurately linear $\log(D)$ vs. T

- **Constant $z = z_r$ (for $T \neq T_r$)**
 - overestimation of L and F
 - underestimation of required holding times
 - not negligible errors

- **To avoid compromising food safety and quality:** Use $z = \ln(10)RT_r/E_a = z_r T/T_r$
 - Particularly important for direct heating systems
Thank you!
Questions?
Tomas Skoglund’s professional background

I studied engineering physics at the Faculty of Engineering (Lund Institute of Technology, LTH) at Lund University and obtained my Master of Science degree (Eng. Phys) 1978. The year 2007 a PhD degree was obtained. During my early years after education I worked with automatic control engineering (at Volvo Aero), acoustics and vibrations consultations (at Ingemansson Akustik) and with research and education (at the Department of Physics at Lund University / Faculty of Engineering, LTH).

From 1982 I was employed at Alfa-Laval and Tetra Pak with a range of assignments and studies:

• 2012 – 2020 Senior Technology Specialist (Heat Treatment & Math. Modeling & Simulation)
• 2001 – 2012 Senior Development engineer and project manager
• 2004 – 2007 PhD studies (part time) at the Faculty of Engineering at Lund University
• 1982 – 2001 Department manager, Environmental manager, Technical product manager, Project manager, Food plant and line automation engineer.

After retirement 2020 I have worked as self-employed consultant in combination with independent private researcher at NovaUmbra.

I am married since 1978 and have three grown-up children with their own families.